Votes

¹⁴N-¹H Coupling in Some N-Alkylnitrilium Salts¹

LESTER A. LEE*2 AND J. W. WHEELER

Department of Chemistry, Howard University, Washington, D. C. 20001, and Naval Ordnance Station, Indian Head, Maryland 20640

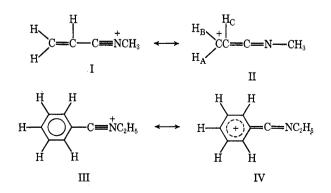
Received March 3, 1971

While investigating³ the reaction of N-alkylnitrilium salts⁴ with sodium and dimethylammonium azide, proton magnetic resonance spectra of the nitrilium salts were studied. Although Goodrich and Treichel⁵ reported pmr data for the N-methylacetonitrilium ion, no interpretation of the complex spectrum was given. Olah and Kiovsky⁶ have studied a number of N-alkylmetry conditions in isonitriles when the lone-pair electrons on nitrogen are involved in bonding. Indeed, this is so in the case of some N-alkylnitrilium salts. In an effort to test the validity of the theory further, the pmr spectrum of CH₃CN+BF₃- in CD₃CN was taken. The spectrum showed one singlet at δ 2.08 indicating no ${}^{14}N-{}^{1}H$ coupling or exchange with the solvent. The pmr spectrum of protonated acetonitrile in FSO₃H- SbF_5-SO_2 solution has been reported⁶ as a sharp doublet at δ -3.25, relative to TMS, corresponding to the methyl group split by the NH proton. The NH⁺ absorption is not observable at -90° . These results possibly suggest that, even though the electronic symmetry requirements may have been satisfied, improper relaxation times for ¹⁴N cause decoupling through quadrupole relaxation.

The pmr spectra of six N-alkylnitrilium ions in $CD_{3}CN$ are summarized in Table I and representative

TABLE I						
PMR DATA OF NITRILIUM IONS ^a IN CD ₃ CN						

	ζδ _{RC}				δ_N R	
Compd (BF ₁ -)	CH_8	СН	CH_2	C_6H_5	\mathbf{CH}_{3}	CH2
CH3CN +CH3	$2.78 \mathrm{m}$				3.71 m	
CD ₃ CN ⁺ CH ₃					3.71 t	
					(J = 3)	
$CH_{3}CN + C_{2}H_{5}$	$2.78 \mathrm{m}$		4.03 m		1.46 m	
$C_2H_5CN + C_2H_5$	1.40 m		3.10 m		1.40 m	4.01 m
H ₂ C=CHCN		5.77 q	6.08 m			
$H_2C \cong CHCN + CH_3$		6.45 m	7.17 m		$3.89 \mathrm{\ br}$	
C_6H_5CN				7.32 m		
$C_6H_5CN + C_2H_5$				$7.80 \mathrm{m}$	1.65 t	$4.42~\mathrm{q}$
					(J = 7)	(J = 7)


^a Values are in ppm from TMS. J values are in Hz. Abbreviations used are br, broad; m, multiplet; t, triplet; q, quartet.

nitrilium ions in sulfur dioxide using ¹⁵N, ¹³C, and ¹H nuclear magnetic resonance.

The first resolvable ¹⁴N-¹H interaction was observed in several isonitriles.⁷ Splitting in isonitriles has been attributed to an unusually small electric field gradient and spin-lattice relaxation times of ¹⁴N.^{7,8} The low electric field gradient is thought to result from axial symmetry of electron density near the nitrogen atom.⁷ Although nitriles resemble isonitriles in being linear groups, nitriles have the lower electronic symmetry because of the nonbonding electrons on nitrogen. The observation of a singlet at δ 1.99 for CH₃CN rather than a 1:1:1 triplet is consistent with this theory. One would anticipate an approach toward electronic sym-

(8) J. A. Pople, Mol. Phys., 1, 168 (1958).

spectra are given in Figures 1-3. The complex pmr spectra (e.g., Figure 1) were due to long-range coupling of N- and C-alkyl protons through the C \equiv N bond in addition to coupling of the alkyl groups to the ¹⁴N nucleus.⁶ There was no change in the pmr spectrum of N-ethylacetonitrilium fluoroborate in CD_3CN at -40, 25, and 80°. Experiments were performed in which the alkyl groups were effectively decoupled from nitrogen by irradiation. Coupling between alkyl groups was minimized by substitution of ¹H by ²H. The spectra of N-methyl- and N-ethylaceonitrilium ions after ir-

⁽¹⁾ Taken from the dissertation of L. A. Lee in partial fulfillment of the requirement for the Ph.D. degree, Howard University, 1970. (2) Author to whom correspondence should be addressed at Polaroid

Corp., Cambridge, Mass. 02139.

L. A. Lee, R. Evans, and J. W. Wheeler, J. Org. Chem., 37, 343 (1972).
H. Meerwein, P. Laasch, R. Mersch, and J. Spille, Chem. Ber., 89, 209 (1956)

⁽⁵⁾ R. A. Goodrich and P. M. Trieichel, J. Amer. Chem. Soc., 88, 3509 (1966). (6) G. A. Olah and T. E. Kiovsky, ibid., 90, 4666 (1968).

⁽⁷⁾ I. D. Kuntz, P. v. R. Schleyer, and A. Allerhand, J. Chem. Phys., 35, 1533 (1961).

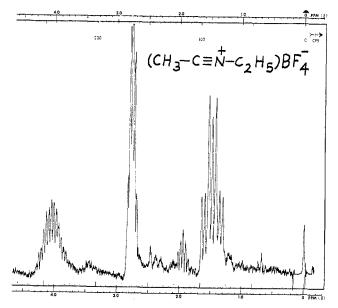


Figure 1.—Pmr spectrum of N-ethylacetonitrilium fluoroborate in CD₈CN.

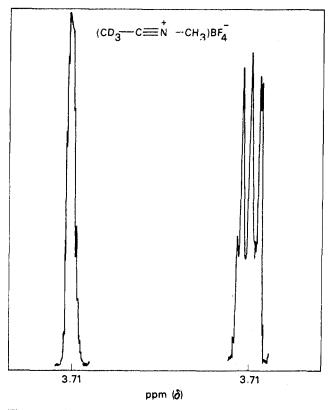


Figure 2.—Pmr spectra of N-methylacetonitrilium- d_{δ} ion, with irradiation of ¹⁴N on left, in CD_{δ}CN.

radiation and substitution of deuterium are shown in Figures 2 and 3.

The pmr spectra of N-ethylbenzonitrilium and Nmethylacrylonitrilium fluoroborate show only slight long-range ${}^{1}H{-}{}^{1}H$ and/or ${}^{1}H{-}{}^{14}N$ coupling. These results suggest the importance of other resonance structures of the nitrilium salts such as II and IV. The pmr spectrum of N-methylacrylonitrilium fluoroborate shows that the H_A and H_B protons are deshielded more

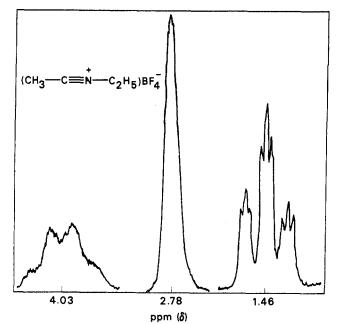


Figure 3.—Pmr spectrum of N-ethylacetonitrilium ion, with irradiation of ¹⁴N, in CD₃CN.

than the H_C proton by 1.09 ppm relative to H_A and H_B protons in acrylonitrile. The phenyl protons in *N*-ethylbenzonitrilium fluoroborate are deshielded by 0.48 ppm relative to the phenyl protons in benzonitrile.

Similar results have been reported⁶ for N-methylbenzonitrilium fluoroborate and protonated acrylonitrile in SO_2 and FSO_3H - SbF_5 - SO_2 , respectively.

Experimental Section

N-Alkylnitrilium Fluoroborates.—All nitrilium salts used in this study were prepared according to the procedure of Meerwein and coworkers.⁴

Boron Trifluoride-Acetonitrile Complex.—The addition compound was prepared by the method of Coerver and Curran⁹ which requires passing BF_3 into an ice-cooled flask containing acetonitrile until the whole mass solidifies, mp 119-120°.

Pmr Spectra.—Proton magnetic resonance spectra of freshly prepared solutions of nitrilium salts in CD₃CN were taken on a Varian Associates A-60 or HR-60 spectrometer. Positions are reported in parts per million from tetramethylsilane (δ) . Nitrogen decoupling experiments were performed with the aid of an nmr Specialties Model SD-60B heteronuclear spin-spin decoupler.

Registry No. —CH₈CN⁺CH₃BF₄⁻, 21353-63-9; CD₃-CN⁺CH₃BF₄⁻, 32830-03-8; CH₈CN⁺C₂H₅BF₄⁻, 462-35-1; C₂H₅CN⁺C₂H₅BF₄⁻, 333-94-8; H₂C=CHCN, 107-13-1; H₂C=CHCN⁺CH₃BF₄⁻, 32830-06-1; C₆H₅-CN, 100-47-0; C₆H₅CN⁺C₂H₅BF₄⁻, 459-39-2.

Acknowledgment.—We wish to thank Dr. E. D. Becker, Jr., and Mr. Robert Bradley of the National Institutes of Health for the ¹⁴N–H decoupling measurements, Professor Elton Price for helpful discussions, and Mr. R. D. Barefoot, Naval Ordnance Station, Indian Head, Md., for some of the pmr measurements. This work was supported by the Foundational Research Program of the Naval Air Systems Command.

⁽⁹⁾ H. J. Coerver and C. Curran, J. Amer. Chem. Soc., 80, 3522 (1958).